peay
(051 puadsns o} ulAn ySeL PUODAS © 11 PasIes A (1M 0.3 WeIB01d)
jana L~ T13un"puadsns Je

Jonasur sulpew ajBus € o1l

+{0.3U05{SE L SNOUOIDUAS “EpY pUS
orejsuei ues pue sse[ananb, s siyL £

afensue] ayz Aq paryroads 30u

£(393fq0"uotsuadsns 3n0 Ut
fueatoog uan3au (30afqo uotsuadsng
£(393q0"uotsusdsNS 3n0 Ut
£(399q0"uoTsuadsns 10 ur ani1m3e5 a.npaso.d
g WrT ST 399£q0"UoTsuadsns
ST T0.43U0)HSELSNOUOIYIUAS “epy aFexded

epy ul saioydewoas

uonezIuoIYdUASs spremoy

UOIIBZIUOIYIUAS 9 UOIBIIUNWUWOD)

SUOM29s [edN1D 10) palinbai ale
suonesado uoneziuoiyduAs |npamod aiop =1

,;_:aens,:raz;;fré:.,_
{SUORY3S [U1 UOISN|OXD [eNINUI [e12U3S 10§ DIGENNS 10U S1 ** 52
“Inq “wonezyuo: uonipuo> ajduis 10} 0 s1 pourow Sey Alowp

s > uonezZIUOIYIUAS a1edIpUI 0} Feyy e se
Sunesado ajqeLIEA SIIOIE (2215-p10M) © U0 a8 59552001 J0 195 Y »

oM} UDMIAQ BAIR AIOWDW PaIRys © S1 2104} 1oy} Jay1ng Suiwnssy
sSey Aq uoneziuoiyduhs uonipuo)

uoneZIU0IYDIUAS SpremMOY

UOIIBZIUOIYIUAS 9 UOIBIIUNWWOD) ==

Qs oy
suopesado-ndd o Aipwoe ay 1noge aBpajmouy
ouAs saanpolyIR [
(snonsesip ualjo 10k ‘e Ajjensn aie Aoy ? (
po1o1dia1uy a1e Sas59208 A10WAW SNOUOIPUASE WOL) BUILIWSLS S0 AUBW)

{peasyy Jayroue ur} {peauyy auo ur}
{fe=1} u < 1 41 41

(speauyy a1dryTnu 03 ATeqors sueroap} T ut
sAJread — ;01 pasu am og
yoayd Apues

UOIBZIUOIYDUAS 9 UOIIBIIUNWIWOD) ==

*POZIUOIYDUAS 3¢ O} PaaU SSIIE JO SWIIO}
|Ie uay ssed01d [BD0] DY) PUSDSUERIY S1I3440 BPIS 3| =1

$53204d Jud.INd 3y} APISINO ** =
10
(SwisjueLIRWI-IEMPIRY 10 50 ““dwiuni Aq paeloid pue)
Ajuo Ajjedo] "+ s
JEINTE)
** 9qISIA DI PIYM S)D919 9pis aaey suonesadO
$10940 3pIS

uojeaop

U01BZIUOIYDUAS 9 UOIIBIIUNWIWOD)

[Alg]l={zAXx [DV]{Da'V | ZX|'Z~A~XD-d~V
:suonesado jo aduanbag

tzd pus ‘14 pus
£ Juaualeds 17 Jususiers

ty uauaress X JususIes
f2d ss20.d f1d ss890.d

f1 =i asoydeuss : xaynu en

sasoydewas Aq uoisnpxa emny

uoneZIUOIYIUAS SpIemoy

UOIIBZIUOIYIUAS *® UOEIIUNWWOD)

[| Ax]A <[V | x]‘g — v :suoneiado jo aduanbag

‘24 pua f14 pua
‘g Juauarers 1A quauazers
Traun
ty usueiers X qwauerers
f24 s5930.d f14 ssasoud

tasey =i uea[ooq : Serd Jea

sSeyy Aq uoneziuoiysuis uonipuo)

uoneziuoydUAs spremoy

UOIBZIUOIYIUAS 9 UOIEIIUNWWOD)

a1e Aoy sdead 1A

epep paseys ay1 Jo ore/
su
ases [emoe oy 10] 5|
Sole aq 1¢ $9p0D siy puedxa 0} MOH 01 umop uaolg =
pausiye e st sy
| :pjoy suondwinsse |[e ji udAg

| wew pausijeun =
saSo1ur uq-g ue 11§
SHWOIE 2 10U [I1W 49][011U0 11G-91 10 -§ & U0 328011 NG-+9 © BuljpuC =
{peauyy Jayroue ur} {peauyy auo ur}
{to=1} u < 1 41T a1
{speaays adraTnw 03 ATTeqor8 aseroap} T T
iAjjeas — 01 pasu am oQg

yoayd Ajues

U013BZIUOIYDUAS 9 UOIIBIIUNWIWOD)

.

“'epy§as1 |jed 21npadoid 210wl UONE0AUI 2IOWRY
T qWeddQ “TIHD ‘epy 80 = sagessaw SNOUOIYPUAS o
XISOd ‘89 = safessaw SNOUOIYPUASY o

uoleZIUOIYDUAS paseq adessapy

Spo|q 1oy

sPalqo papelold

SpouIaw pazIuoIUAS

SO|GeLIEA [PUONIPUOD 3 SOXINIY

‘a1eop ensylic] — Sl ‘L-eIPOy sionuopy

1uswadxa) Uos|p3 suoi8al (2113 [EUONIPUOD

ensylia — XISOd ‘D = sasoydewas
uoneZIUOIYDUAS paseq Alowaw pateys

SpoY1aW UONEZIUOIYIUAS

MIINIAQ

U013BZIUOIYDUAS 9 UOIIBIIUNWIWOD)

[g] AX])%A ~ [V | X]‘g — v suoneiado jo aduanbag
‘2d pus f1d pus
g juswaleys fA juawalels

ty Juauarels X Juausies
f2d ssa20.d f1d ss390.d

to = aJoudewds : dufs Jen

sasoydewas Aq uoneziuoiysuis uonipuo)

uoneZIUOIYIUAS SpIeMOL

UONBZIUOIYIUAS *® UOIEIIUNWWOD) ==

s ayouks ol e s
Sunesado 9|qeLIEA SIWIOIE (2215-PI0M) © U0 935 59553010 J0 195 Y e

:595590.d OM) UGDMID] BAIE AIOWAW PaIeys © S1 10U} 1By} Jay1ny Fununssy
s8eyy Aq uoneziuoaysuis uonipuo)

uonezZIuoIYOUAS spremoy

UONBZIUOIYIUAS *® UOIBIIUNWWOD)

aue fouy sdesod 194

o ou 1S saypeE e
“Biep poseys oy jo asemi deyiad jaf -

suopesado exep paseys jo aandadsau speaiy 1dnisalur sIaINPayds Aueyy
ases enioe ayy 10y suonesado suwoge sayddns 10ssa201d ayy sdeysod 1A

S1wioie aq 10u Aljensn (i suonesado ay) ‘apAd a101s-ajesado-peo] € 0} UMOp UBNOIg =1
pausiye e sy sdeysod 1A

S1uwi07e 9q 10U Ajjensn [jim Alowaw utew oy uo suoendiuew pausijeun
980101 11G-g ue 511 sdeyiad 1A -

IWOIE 3G 10U [|1M 9][011UOD NG-9L 10 -g B U0 195211 NG-p9 © BulpueH =1
{peays Jayroue ur} {peasys auo ur}
ftest} u <1 st e
(speauy1 ardragnu 03 ATTeqorS 2seTa8p) ¥ ut
sAJ/ead — ;01 pasu am oqg
yoayd Ajues

U013BZIUOIYDUAS 9 UOIIBIIUNWWOD)

wA_

002
uonipa iy -
uoneoyads 95enIueT ALl 341
pepD ‘eypeig 3 Ano
0L0Z ‘€L Adenue(— yeiq
10T uoIsion
01X 29enSue] SuwweiSolq oy uo Loday

-NgS| ‘UoneINpa UosIEayg
500Z BpY Ut 8t
5107 udy 7 uo paseajes jpd'z6'0-2ads/>ads uyof ‘souseg
Jwo>Kes>jadey//:diy 1o saBed asinod aas [900zsaueg]
[£6°0 UOISIOA
a8enguey (L1

[0L0zyemsRIRS]

51 pue uaLnou0) 4o SajdiouLly
-ue] - [enuely 9ussajey EPY uy-uag W
[ZL0ZWYePY] [90uy-uag]

1a3deyd siy) 1oy saduaasRy

U013BZIUOIYDUAS 9 UONIEIIUNWWOD)

-z

-a10ydewas e pajed 51 5

-+ sod-was, ‘anij1g, eudis, exe
(SIA
+(,589[01 01, 10} Y2INQ) USASBAIA, 10§ — § UO A UopeIado DO U

;UE:_:‘EUQ;
uonesado Suiejap Ajjenusiod e sy st a1 " .

ed, 10y yoanq) uosassed, 10y — §

SUOHIPUOD UONEZIUOIYIUAS DIEDIP
e se Sunesado § ojqeLeA e U0 93180 sassa001d Jo Jas e e

ssos59304d Aiowaw paseys e uo s 3 Sunwnssy
(8961 en1sl1Q) uonIuyap diseg
sasoydewsas Aq

uoneziuoiyduAs diseg

UONBZIUOIYIUAS *® UOEIIUNWWOD)

9|GEAIDSO 19AD S1 AN[EA JAYIO OU PUE =005 = X0 @ = X JOYHd U1 INSaI [|IM
005 =: I e=ix

ApusiInouod (195 Atowaw pausiye ue o)
(,pIOM, © 10 2715 DU UBY) 19PIM JOU) SaN[EA oM BuruGisse o1

:And1wore ssaode-piom :uondwnssy

s8eyy Aq uoneziuoaysuis uonipuo)

uonezZIuoIYOUAS spiemoy

UONBZIUOIYIUAS *® UOEIIUNWWOD)

uaddey ued jeyy 1s10m ay3 s 1RYM

{peaayy sayzoue ur} {peauyy auo ur}
{fo=1} U < T 41 et

(speauy1 ardragnu 03 ATTeqoS aseTasp) it wut
sAJreas — ;01 pasu am og
¥oayd Ajues

U013BZIUOIYDUAS *® UONIEIIUNWWOD) ==

ANISIOAIUN [BUOIIBN UBI[RNSNY BY] - JBWIWIZ "y dMN

UOIBZIUOIYDUAS % UOIBDIUNWWOD)

020Z AoUa.11N2U0)) 9 SYIOMIDN ‘SWIISAS

Communication & Synchronization

Towards synchronization

Semaphores in Ada

package Ada.Synchronous_Task_Control is

type Suspension_Object is Limi+—Tivate;

orwise: | out Suspension_Object)
Jy ... otherwise ;
= for special cases O I out Suspension_Object)

L speﬁsmn

(\\

“rocedure int in out 9

- not specified hy the; :m\;g

end Ada. Synchronous gl COlkrd

only one task can beb\l(ked at Suspend_Until_True!
(Progran_Error will be raised with a second task trying to suspend itself)

& no queues! e minimal run-time overhead

Communication & Synchronization

Towards synchronization
Semaphores in POSIX

pshared s actually a Boolean indicating whether the
semaphore s © be shared between processcs

sem_init (sem_t *sem_location, int pshared, unsigned int value);
sem_destroy (sem_t xsem_location);
sem_wait (sem_t #sem_location);
sem_trywait (sem_t xsem_location);
sem_timedwait (sem_t #sem_location, const struct timespec xabstime);
sem_post. (sem_t *sem_location);

sem_getvalue (sem_t *sem_location, int *value);

+value indicates the number of waiting processes as a
negative integer in case the semaphore value is zero

Communication & Synchronization

Distributed synchronization

Conditional Critical Regions

Basic idea:

« Critical regions are a set of associated code sections in different processes,
which are guaranteed to be executed in mutual exclusion:

Shared data structures are grouped in named regions

and are tagged as being private resources.

Processes are prohibited from entering a critical region,

when another process is active in any associated critical region.

+ Condition synchronisation is provided by guards:

+ When a process wishes to enter a critical region it evaluates the guard (under mu-

tual exclusion). If the guard evaluates to false, the process is suspended / delayed.

* Generally, no access order can be assumed w potential livelocks

Communication & Synchronization

Centralized synchronization
Monitors

buffer;
export append, take;
var (+ declare protected vars *)
procedure append (I : integer);
procedure take (var I : integer);
begin

(* initialisation *) How to implement
L conditional synchronization?

:‘2\

Communication & Synchronization

Towards synchronization

Malicious use of "queueless semaphores"

with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;
X : Suspension_Object;

task B; task A;
task body B is task body A is
begin begin

Suspend_Until_True (X); Suspend_Until_True (X);

w Could raise a Progran_Error as multiple tasks potentially suspend on the same semaphore
(occurs only with high efficiency semaphores which do not provide process queues)

Communication & Synchronization

Communication & Synchronization

Towards synchronization

Semaphores in POSIX

n_t mutex, cond[2]; void (priority_t P)
typedef emun {low, high} priority_t; 9

int waiting; . (&mutex);

int busy; busy

(&cond[high], &waiting);

void (priority_t P) it (waiting < 0) {

(1_post. (&condlhighl);
t (8nutex);

if (busy) {

© (8nutex); tvalue (8cond[low], Bwaiting);

(cond[P1); Deadlockt || i Gwaiting <o) €
Livelock? | C (&cond[low]);
¢ (anutex); Mutual exclusion? | 1z ¢
= — (mutex);
133

Towards synchronization

Malicious use of "queueless semaphores"

with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;
X, Y : Suspension_Object;

task B; task A;
task body B is task body A is
begin begin

Suspend_Until_True (Y); Suspend_Until_True (X);
Set_True (X); Set_True (V);

end B; end A;

w Will result in a deadlock (assuming no other Set_True calls)

Communication & Synchronization

Communication & Synchronization

Distributed synchronization
Conditional Critical Regions

buffer : buffer_t;

process producer; process consumer;
loop loop

when when
end end

end loop; end loop;
end producer; end consumer;

Towards synchronization

Semaphores in Java since 2000
Semaphore (int permits, boolean fair)
void acquire 0
void acquire (int permits)
void acquireUninterruptibly (int permits) wait
boolean tryAcquire O L —
boolean tryAcquire (int permits, long timeout, TimeUnit unit)
int availablePermits O

protected void reducePermits (int reduction) check and manipulate |

int drainPermits

void release O

void release (int permits)
protected Collection <Thread> getQueuedThreads ()

int getQueuelength

boolean hasQueuedThreads

boolean isFair O

String toString O

administration

Communication & Synchronization

Communication & Synchronization

Centralized synchronization
Monitors with condition synchronization
(Hoare ‘74)
Hoare-monitors:

Condition variables are implemented by semaphores (Wait and Signal).
Queues for tasks suspended on condition variables are realized

A suspended task releases its lock on the monitor, enabling another task to enter.

More efficient evaluation of the guards:

the task leaving the monitor can evaluate all guards and the right tasks can be activated.

Blocked tasks may be ordered and livelocks prevented.

Distributed synchronization

Review of Conditional Critical Regions

Well formed syn: blocks and sync conditions.

Code, data and synchronization primitives are associated (known to compiler and runtime)

All guards need to be re-evaluated, when any conditional critical region s left:

w all involved processes are activated to test their guards

& there is no order in the re-evaluation phase s potential livelocks

Condition synchronisation inside the critical code sections

requires to leave and re-enter a critical region.

As with semaphores the conditional critical regions are distributed all over the code.

& on alarger scale: same problems as with semaphores

(The language Edison (Per Brinch Hansen, 1981) uses conditional critical regions for synchroniz-
ationina mulﬂprc(essov environment (each processis associated with emcﬂy one pio(essorl)

=3 Communication & Synchronization

Centralized synchronization

Monitors with condition synchronization
buffer;
export append, take;
var BUF : array [.. 1 of integer;
top, base 0..size-
NumberInBuffer integer;
spaceavailable, itemavailable : condition;
procedure append (I : integer);
begin
1F Number nBuffer = size then
spaceavailable);
end iF;
BUF [top] := I;
NumberInBuffer := NumberInBuffer + 1;
top := (top + 1) mod size;
(itemavailable)
end append; ..

| o

Communication & Synchronization

Towards synchronization

Malicious use of "queueless semaphores"

with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;
X, Y : Suspension_Object;

task B; task A;
task body B is task body A is
begin begin

Suspend_Until_True (V); Suspend_Until_True (X);
Suspend_Until_True (X); Suspend_Until_True (Y);

end B; end A;

« Will potentially result in a deadlock (with general semaphores)
oraProgram_Error in

Communication & Synchronization

Towards synchronization

Review of semaphores

« Semaphores are not bound to any resource or method or region
& Compiler has no idea what is supposed to be protected by a semaphore.
« Semaphores are scattered all over the code
& Hard to read and highly error-prone.
& Adding or deleting a single semaphore operation usually stalls a whole system.

> Semaphores are generally considered
inadequate for non-trivial systems.

(all concurrent languages and environments offer
efficient and higher-abstraction synchronization methods)

w Special (usually close-to-hardware) applications exist.

Communication & Synchronization

Centralized synchronization

Monitors

(Modula-1, Mesa — Dijkstra, Hoare)

Basic idea:

Collect all operations and data-structures shared in critical regions in one place, the monitor.

Formulate all operations as procedures or functions.
Prohibit access to data-structures, other than by the monitor-procedures and functions.
Assure mutual exclusion of all monitor-procedures and functions.

Communication & Synchronization

Centralized synchronization

Monitors with condition synchronization

procedure take (var I : integer);
begin
if NumberInBuffer = @ then
(itemavailable);
end if;
T := BUF[basel;
base := (baset1) mod size;
Nunber InBuffer := NumberInBuffer-
(spaceavailable);
end take; active in the monitor!
begin (x initialisation %)
Number InBuffer := 0;
top
base
end;

The signalling and the
waiting process are both

Communication & Synchronization

Centralized synchronization

Monitors with condition synchronization

Suggestions to overcome the multiple-tasks-in-monitor-problem:
« Asignal is allowed only as the /ast action of a process before it leaves the monitor.
« Asignal operation has the side-effect of executing a return statement.
« Hoare, Modula-1, POSIX:
a signal operation which unblocks another process has the side-effect of blocking the cur-

rent process; this process will only execute again once the monitor is unlocked again

+ Asignal operation which unblocks a process does not block the caller,
but the unblocked process must re-gain access to the monitor.

Communication & Synchronization

Centralized synchronization

Monitors in POSIX (‘/C’)

(types and creation)

Synchronization between POSIX-threads:
typedef .. pthread_mutex_t;
typedef .. pthread_mutexattr_t; <
typedef .. pthread_cond_t;
typedef .. pthread_condattr_t;

Attributes include:

semantics for trying to lock a mutex which
T islocked already by the same threa
int pthread_mutex_init (pthrea o sharing of mutexes and
const pthreal condition variables between processes

int pthread_nutex_destroy (pEhreat | iority ceiling

int pthread_cond_init (pthreat o clock used for timeouts
const pthreat
int pthread_cond_destroy (pthread *

]

Communication & Synchronization

Centralized synchronization

Monitors in POSIX (‘C’)

(operators)

int pthread_mutex_lock ~C pthread_nutex_t *nutex);

int pthread_mutex_trylock < smutex);

int pthread_mutex_timedlock ¢ T Hmutex,
const ime);

' can be called

int pthread_mutex_unlock (pthread_nutex_t smutex); | o any time

pthread_cond_t *cond,
pthread_mutex_t #mutex)
pthread_cond_t

int pthread_cond_wait « anywhere

« multiple times
int pthread_cond_timedwait
*abstime);

bthread_cond_t *cond);
pthread_cond_t cond);

int pthread_cond_signal
int pthread_cond_broadcast

Communication & Synchronization

Centralized synchronization

Monitors in Visual C++

using namespace System;
using namespace System: :Threading
private: integer data_to_protect;

void Reader() void Writer()
{try { {try {
Monitor: :Enter (data_to_protect); Monitor: :Enter (data_to_protect);
Monitor: :Wait (data_to_protect); write protected data
. read out protected data Monitor: :Pulse (data_to_protect);
3
finally {
Monitor.Exit (data_to_protect);
¥

3}
finally {
Monitor::Exit (data_to_protect);

. =
a

Communication & Synchronization

Centralized synchronization

Monitors in Modula-1

« procedure wait (s, r):
delays the caller until condition variable s is true (r is the rank (or ‘priority’) of the caller).

« procedure send (s):
If a process is waiting for the condition variable s, then the process at the top of

the queue of the highest filled rank is activated (and the caller suspended).

* function awaited (s) return integer:
check for waiting processes on s.

=]
| &

Communication & Synchronization

Centralized synchronization

Monitors in POSIX (‘/C’)

(types and creation)

Synchronization between POSIX-threads:
- pthread_mutex_t;
pthread_nutexattr_t;
pthread_cond_t;

Undefined while locked
typedef . pthread_condattr_t; — —

int pthread_mutex_init (pthread_nutex_t mutex,
Const pthread_nutexattr_t xattr);

int pthread_mutex_destroy (pthread_mutex_t *mutex);

pthread_cond_t *cond,
const pthread_condattr_t attr);
pthread_cond_t *cond);

int pthread_cond_init (
int pthread_cond_destroy

Undefined while threads are waiting

\
=3

Communication & Synchronization

Centralized synchronization

#define BUFF_SIZE 10
typedef struct { pth: _t mutex;
buffer_not_full;
pth nd_t buffer_not_empty;
int count, first, last;
int buf [BUFF_SIZE];
} buffer;

int append (int item, buffer #8) { int take (int item, buffer *8) {
HREAD_MUTEX_LOCK (88->nutex); PTHREAD_MUTEX_LOCK (8B->mutex);
while (B->count == BUFF_SIZE) { while (B->count == 0) {
PTHRE T THRE

«
88->buffer_not_empty,
88->nutex);

«
88->buffer_not_full,
88->mutex) ;

(8B->nutex); (88->nutex);
(

88->buffer_not_empty) ; 88->buffer_not_full);

return @; return 0;

Communication & Synchronization

Centralized synchronization

Monitors in Visual Basic

Inports Systen
Inports Systen. Threading
Private Dim data_to_protect As Integer = 0
Public Sub Reader Public Sub Writer
Try Try
Monitor Enter (data_to_protect) Monitor Enter (data_to_protect)
Monitor.Wait (data_to_protect) write protected data
. read out protected data Monitor.Pulse (data_to_protect)
Finally Finally
Monitor Exit (data_to_protect) Monitor Exit (data_to_protect)
End Try End Try
End Sub End Sub

]
&a

Communication & Synchronization

Communication & Synchronization

Centralized synchronization

Monitors in Modula-1

resource_control;

allocate, dealls

ocate;

VAR busy : BOOLEAN; free :

PROCEDURE allocate;

IF busy THEN
busy := TRUE;

busy := false;
END.

(free) END;

(free) THEN (free);

Communication & Synchronization

int pthread_nutex_lock

int pthread_mutex_trylock
int pthread_nutex_timedlock

int pthread_mutex_unlock (

int pthread_cond_wait

int pthread_cond_timedwait (

int pthread_cond_signal

int pthread_cond_broadcast

Centralized synchronization

Monitors in POSIX (‘/C’)

(operators)

« pthread_nutex_t mutex);
« pthread_nutex_t smutex);
q pthread_nutex_t smutex,
const struct timespec #abstime);

pthread_nutex_t smutex);

unblocks ‘at least one’ thread

preTTaT=CONY =T CONT,

pth|
const stri unblocks all threads

M;ad,cond,(*eond);

pthread_cond_t *cond);

Communication & Synchronization

#define BUFF_SIZE 10
typedef struct { :
int co

int bu

} buffer

int append (int item,
_MUTEX_LOCK
while (B->count
88-;
&8~

L
88->b
return 0;

Centralized synchronization

_nutex_t mutex;
it buffer_not_full;
it buffer_nes—rrt
unt, first, last;l ,eed 1o be called
' [BUFF_SIZE]; with a locked mutex

int take (int *item, buffer B) {

while hn

(8B->mutex) ;

better to be called

>buffer_not_full,

(88=>tex); PTHF] L
PTHE
uffer_not_empty);
return 0;

after unlocking all mutexes.
QL) | (as itis itself potentially blocking) |

(88->mutex);

oty

88->buffer_not_full);

||

Communication & Synchronization

Monitor mon = new Monit

Centralized synchronization

Monitors in Java

or();

Monitor.Condition Condvar = mon.new Condition();

public void reader
throws InterruptedEx
mon. enter();
Condvar.await();

read out protected data

mon. leave();

public void writer
ception {

mon.enter();

throws InterruptedException

write protected data

Condvar.signal();
mon. leave();

the Java library monitor
Connects data or condition
variables to the monitor
by convention only!

Centralized synchronization

Monitors in POSIX (‘C’)

(types and creation)

Synchronization between POSIX-threads:
typedef . pthread_nutex_t;
typedef .. pthread_nutexattr_t;
typedef .. pthread_cond_t;
typedef ... pthread_condattr_t;

int pthread_mutex_init (

pthread_mutex_t ~ #mutex,

const pthread_nutexattr_t xattr);

int pthread_mutex_destroy (

int pthread_cond_init (

pthread_mutex_t

*mutex);

pthread_cond_t *cond,

const pthread_condattr_t *attr);

int pthread_cond_destroy (

pthread_cond_t *cond);

Communication & Synchronization

Centralized synchronization

Monitors in POSIX (‘C’)

(operators)

pthread_nutex_lock «
pthread_nutex_trylock (
pthread_nutex_timedlock (

pthread_nutex_t *mutex);
pthread_nutex_t #mutex);
pthread_nutex_t smutex,

const struct timespec xabstimal

pthread_nutex_unlock <4——— pthread_nutex t ndefined

fread_mutex_t |
pthread_cond_t

pthread_cond_wait pthread_cond=" |
e

pthread_cond_timedwait T

if called ‘out of order’
i.e. mutex is not locked

pthread_nutex_t FIEeX,
const struct timespec abstime);

int pthread_cond_signal
int pthread_cond_broadcast (

pthread_cond_t scond);
pthread_cond_t *cond);

Communication & Synchronization

Centralized synchronization
Monitors in C#

using System;
using System. Threading;
static long data_to_protect =

static void Reader()
Ctry €
Monitor.Enter (data_to_protect);
Monitor.Wait (data_to_protect);
. read out protected data
by
finally {
Monitor.Exit (data_to_protect);
¥
}

static void Writer()
Ctry €
Monitor Enter (data_to_protect);
. write protected data
Monitor.Pulse (data_to_protect);
)
finally {
Monitor Exit (data_to_protect);
)

Communication & Synchronization

Centralized synchronization

Monitors in Java

(by means of language primitives)

Java provides two mechanisms to construct a monitors-like structure:

 Synchronized methods and code blocks:
all methods and code blocks which are using the synchronized
tag are mutually exclusive with respect to the addressed class.

Notification methods:

wait, notify, and notifyAll can be used only in
synchronized regions and are waking any or all threads,
which are waiting in the same synchronized object.

Communication & Synchronization

Centralized synchronization

Monitors in Java
(by means of language primitives)
Considerations:

1. Synchronized methods and code blocks:

+ In order to implement a monitor all methods in an object need to be synchronized.
w any other standard method can break a Java monitor and enter at any time.

* Methods outside the monitor-object can synchronize at this object.

w itis impossible to analyse a Java monitor locally, since lock ac-
cesses can exist all over the system.

* Static data is shared between all objects of a class.

e access to static data need to be synchronized with all objects of a class.

Synchronize either in static synchronized blocks: synchronized (this.getClass()) (.}
or in static methods: public synchronized static <method> (..}

Communication & Synchronization

Centralized synchronization

Monitors in Java

P ple: usage of external variables)

public void StartWrite () throws InterruptedException {
synchronized (0k 4
synchronized €
if (writing | readers >
wai tinghiriters++;

3 else {
writing = true;

Communication & Synchronization

Centralized synchronization

Monitors in Java

Per Brinch Hansen (1938-2007) in 1999:

Java’s most serious mistake was the decision to use the sequential

part of the language to implement the run-time support for its paral-
lel features. It strikes me as absurd to write a compiler for the sequen-
tial language concepts only and then attempt to skip the much more

difficult task of implementing a secure parallel notation. This wish-
ful thinking is part of Java’s unfortunate inheritance of the insecure

C language and its primitive, error-prone library of threads methods.

"Per Brinch Hansen is one of a handful of computer pioneers who was responsible for advan-
cing both operating systems development and concurrent programming from ad hoc tech-
niques to systematic engineering disciplines.” (from his IEEE 2002 Computer Pioneer Award)

Communication & Synchronization

Centralized synchronization

Criticism of monitors

* Mutual exclusion is solved elegantly and safely.
 Conditional synchronization is on the level of semaphores still

v all criticism about semaphores applies inside the monitors

= Mixture of low-level and high-level synchronization constructs.

1
a

Communication & Synchronization

Centralized synchronization

Monitors in Java

(by means of language primitives)
Considerations:

2. Notification methods: wait, notify, and notifyAll
« wait suspends the thread and releases the local lock only
& nested wait-calls will keep all enclosing locks.
notify and notifyAll do not release the lock!
w methods, which are activated via notification need to wait for lock-access.

Java does not require any specific release order (like a queue) for wait-suspended threads

w livelocks are not prevented at this level (in opposition to RT-Java).
There are no explicit conditional variables associated with the monitor or data.

w notified threads need to wait for the lock to be released
and to re-evaluate its entry condition.

=
e

Communication & Synchronization

Centralized synchronization

Monitors in Java

P ple: usage of external variables)

public void StopWrite () {
synchronized) {
synchronized
synchronized {

if (waitinghiriters > 0) {

waitinghriters--;
i ; // wakeup one writer

3 else {

writing = false;
ToRead. n 11 O; // wakeup all readers

readers = waitingReaders;
waitingReaders = ©;

Communication & Synchronization

Centralized synchronization

Object-orientation and synchronization

Since mutual exclusion, notification, and condition synchronization schemes need to be de-
signed and analyzed considering the implementation of all involved methods and guards:

= New methods cannot be added without re-evaluating the class!

Re-usage concepts of object-oriented programming do not translate to
synchronized classes (e.g. monitors) and thus need to be considered carefully.

w5 The parent class might need to be adapted
in order to suit the global synchronization scheme.
= Inheritance anomaly (Matsuoka & Yonezawa ‘93)
Methods to design and analyse expandible synchronized systems exist, yet they

are complex and not offered in any concurrent programming language
Alternatively, inheritance can be banned in the context of synchronization (e.g. Ada).

=3 Communication & Synchronization

Centralized synchronization

Synchronization by protected objects
Combine
the encapsulation feature of monitors.
with
the coordinated entries of conditional critical regions
to:
= Protected objects

All controlled data and operations are encapsulated.

Operations are mutual exclusive (with exceptions for read-only operations).
Guards (predicates) are syntactically attached to entries.

No protected data is accessible (other than by the defined operations).

Fairness inside operations is guaranteed by queuing (according to their priorities).
Fairness across all operations is guaranteed by the "internal progress first" rule.
Re-blocking provided by re-queuing to entries (no internal condition variables).

Communication & Synchronization

Centralized synchronization

Monitors in Java
(by means of language primitives)
Standard monitor solution:

declare the monitored data-structures private to the monitor object (non-static).
introduce a class ConditionVariable:

public class ConditionVariable {

public boolean wantToSleep = false;

b
introduce synchronization-scopes in monitor-methods:
w synchronize on the adequate conditional variables first and
= synchronize on the adequate monitor-object second,

make sure that all methods in the monitor are the correct syn

make sure that no other method in the whole system is
synchronizing on or interfering with this monitor-object in any way e by convention.

|
=3 Communication & Synchronization

Centralized synchronization

Monitors in Java

ltiple-read ple: usage of external variables)

public void StartRead () throws InterruptedException {
synchronized 4
synchronized ¢
if (writing | waitingWriters > @) {
wai tingReaders++;
i wa
3 else {
readers++;
[1. wa

Communication & Synchronization

Centralized synchronization

Monitors in POSIX, Visual C++, C#, Visual Basic & Java

w All provide lower-level primitives for the construction of monitors.
= All rely on convention rather than compiler checks.

w Visual C++, C+ & Visual Basic offer
data-encapsulation and connection to the monitor.

= Java offers data-encapsulation (yet not with respect to a monitor).

= POSIX (being a collection of library calls)
does not provide any data-encapsulation by itself.

= Extreme care must be taken when employing

object-oriented programming and synchronization (incl. monitors)

=3 Communication & Synchronization

Centralized synchronization

Synchronization by protected objects

(Simultaneous read-access)

Some read-only operations do not need to be mutually exclusive:
protected type Shared_Data (Initial : Data_Item) is
function return)_Ttem;
procedure Write (New_Value : Data_Item);
private
The_Data : Data_Ttem := Initial;
end Shared_Data_Item;

protected functions can have ‘in’ parameters onl
and are not allowed to alter the private data (enforced by the compiler).
protected functions allow simultaneous access (but mutual exclusive with other operations)

there is no defined priority between functions and other protected operations in Ada.

| o

Communication & Synchronization

Centralized synchronization

Monitors in Java

(multiple-readers-one-writer-example: usage of external conditional variables)

public class Readershriters {
private int readers ;
private int waitingReaders = 0;
private int waitingWriters = @;
private boolean writing alse;
Conditionvariable new Conditionvariable ();
ConditionVariable new ConditionVariable ();

Communication & Synchronization

Centralized synchronization

Monitors in Java

ple: usage of external variables)

public void StopRead ()
synchronized
synchronized
readers--;
if (readers == 0 & waitingWriters > @) {
waitinghriters--;
ToWrit

Communication & Synchronization

Centralized synchronization
Nested monitor calls

Assuming a thread in a monitor is calling an operation in
another monitor and is suspended at a conditional variable there:
w the called monitor is aware of the suspension and allows other threads to enter.
& the calling monitor is possibly not aware of the suspension and keeps its lock!
w the unjustified locked calling monitor reduces the
system performance and leads to potential deadlocks.

Suggestions to solve this situation:

« Maintain the lock anyway: e.g. POSIX, Java
« Prohibit nested monitor calls: e.g. Modula-1

« Provide constructs which specify the release of a monitor lock for remote calls, e.g. Ada

Communication & Synchronization

Centralized synchronization

Synchronization by protected objects
(Condition synchronization: entries & barriers)
Condition synchronization is realized in the form of protected procedures
combined with boolean predicates (barriers): = called entries in Ada:
Buffer_Size : constant Integer := 10;
type Index s mod Buffer Size;
subtype Count is Natural range @ .. Buffer_Size;
type Buffer_T is array (Index) of Data_Item;
protected type Bounded_Buffer is
entry Get (ten : out
entry ‘
private
First Index := Index’First;
Last Index Index’Last;
N Count = 0;
Buffer : Buffer_T;
end Bounded_Buffer;

Communication & Synchronization

Centralized synchronization

Synchronization by protected objects

(Condition synchronization: entries & barriers)

protected body Bounded_Buffer is
entry Get (Item : out Data_Item) when
begin
Item := B
First := F
Num = N
end Get;

uffer (First);
irst + 1
un - 1;

entry Put (Item : Data_Ttem) when

end Bounded_Buffer;

Communication & Synchronization

Centralized synchronization

Synchronization by protected objects

(Operations on entry queues)
The count attribute indicates the number of tasks waiting at a specific queue:

protected Block_Five is protected body Block_Five is
entry Proceed; entry Proceed

private when

Release : Boolean or Release is

begin
Release

end Proceed;

end Block_Five;

end Block_Five;

Communication & Synchronization

Centralized synchronization

Synchronization by protected objects

(Entry families, requeue & private entries)
How to moderate the flow of incoming calls to a busy server farm?

type Urgency is (urgent, not_so_urgent);
type Server_Farm is (primary, secondary);
protected Pre_Filter is

entry Reception (U : Urgency);
private

entry Server U : Urgency);
end Pre_Filter;

Communication & Synchronization

Shared memory based synchronization

POSIX

All low level constructs available

Connection with the actual data-struc-
tures by means of convention only

Extremely error-prone

Degree of non-determinism intro- P
duced by the ‘release some’ semantic vanavles.

“C’based
Portable

1
a

Communication & Synchronization

Communication & Synchronization

Centralized synchronization

Synchronization by protected objects

(Withdrawing entry calls)

Buffer : Bounded_Buffer;
select
or

delay

-~ do something after 10 s.
end select;
select
else

-~ do something else

end select;

.|
=3 Communication & Synchronization

Centralized synchronization

Synchronization by protected objects
(Operations on entry queues)
The count attribute indicates the number of tasks waiting at a specific queue:
protected type Broadcast is protected body Broadcast is
entry Receive (M: out Message); entry Receive (M: out Message)
procedure Send (M Message) ; when i is
private begin
New_Message : Message; M = New_Message
Arrived : Boolean := False; Arrived >0;
end Broadcast; =Y
procedure Send (M: Message) is
New_Message
Arrived
end Send;
end Broadcast;

Communication & Synchronization

Centralized synchronization

Synchronization by protected objects
(Entry families, requeue & private entries)
protected body Pre_Filter
entry Reception (U : Urgency)
when Ser nt = @ or else Ser
begin
If U = urgent and then
r Server (primary);
else
r Server (secondary);
end if;
end Reception;
entry Server (for S in Ser (U : Urgency) when True is
begin null; -- might try something even more useful
end Server;
end Pre_Filter;

=3 Communication & Synchronization

Shared memory based synchronization

Java

Mutual exclusion available.
General notification feature (not
connected to other locks, hence

not a conditional variable)

Universal object orientation makes
local analysis hard or even impossible

Mixture of
high-level object oriented features and
low level concurrency primitives

Centralized synchronization

Synchronization by protected objects
(Withdrawing entry calls)

Buffer : Bounded_Buffer;
select select

or then abort
delay -- meanwhile try something else
- do something after 10 s. T
end select;
select
select delay
then abort
else ;
- do something else - try to enter for 10 s.
end select; end select;

|
=3 Communication & Synchronization

Centralized synchronization
Synchronization by protected objects
(Entry families, requeue & private entries)
Additional, essential primitives for concurrent control flows:
 Entry families:
A protected entry declaration can contain

adiscrete subtype selector, which can be evaluated by the barrier (other parameters
cannot be evaluated by barriers) and implements an array of protected entries.

* Requeue facility:

Protected operations can use ‘requeue’ to redirect tasks to other internal, external, or private
entries. The current protected operation is finished and the lock on the object is released.

“Internal progress firstrule: external tasks are only considered for queuing
on barriers once no internally requeued task can be progressed any further!

* Private entries:
Protected entries which are not accessible from outside the protected
object, but can be employed as destinations for requeue operations.

Communication & Synchronization

Centralized synchronization

Synchronization by protected objects

(Restrictions for protected operations)

All code inside a protected procedure, function or entry is bound to non-blocking operations

Thus the following operations are prohibi

* entry call statements
delay statements
task creations or activations
select statements
accept statements
« ...as well as calls to sub-programs which contain any of the above
= The requeue facility allows for a
potentially blocking operation,
and releases the current lock!

=3 Communication & Synchronization

Shared memory based synchronization

C#, Visual C++, Visual Basic s

Mutual exclusion via
library calls (convention)

Data is associated with the

locks to protect it

Condition variables related to

the data protection locks

Mixture of

high-level object oriented features and
low level concurrency primitives

== Communication & Synchronization

Centralized synchronization

Synchronization by protected objects
(Barrier evaluation)
Barrier in protected objects need to be evaluated only on two occasions:
« on creating a protected object,
all barrier are evaluated according to the initial values of the internal, protected data.
on leaving a protected procedure or entry,
all potentially altered barriers are re-evaluated.
Alternatively an implementation may choose to evaluate barriers on those two occasions:
on calling a protected entry,
the one associated barrier is evaluated.

on leaving a protected procedure or entry,
all potentially altered barriers with tasks queued up on them are re-evaluated.

Barriers are not evaluated while inside a protected object or on leaving a protected function.

Communication & Synchronization

Centralized synchronization

Synchronization by protected objects

(Entry families)

package Modes is package body Modes is
type Mode_T is protected body Mode_Gate is
(Takeoff, Ascent, Cruising, procedure Set_Mode
Descent, Landing); (Mode: Mode_T) is
protected Mode_Gate is in
procedure Set_Mode (Mode: Mode_T); Current_Mode := Mode;
entry (b end Set_Mode;
private entry
Current_Mode : Mode_Type := Takeoff; (for Mode in
end Mode_Gate; when Current_Mode =
end Modes; begin null;
end Wait_For_Mode;
end Mode_Gate;
end Modes;

= Communication & Synchronization

Shared memory based synchronization

General

Criteria:

* Levels of abstraction
« Centralized versus distributed

Support for automated (compiler based)
consistency and correctness validation

Error sensitivity
Predictability
Efficiency

Communication & Synchronization

Shared memory based synchronization

C++14

Mutual exclusion in scopes
Data is not strictly associated
with the locks to protect it
Condition variables related to
the mutual exclusion locks

Set of essential primitives without combin-
ing them in a syntactically strict form (yet?)

Communication & Synchronization

Shared memory based synchronization

Rust Monior

Mutual exclusion in scopes
Data is strictly associated B

with locks to protect it ancainion P—
Condition variables related to

the mutual exclusion locks

Combined with the message passing

semantics already a power set of tools.

Concurrency features migrated .

to a standard library. (st Vope)

Communication & Synchronization

Current developments
Atomic operations in X10
X10 offers only atomic blocks in unconditional and conditional form.
« Unconditional atomic blocks are guaranteed to be non-blocking,

which means that they cannot be nested and need to be implemented using roll-backs.
Conditional atomic blocks can also be used as a pure notification system

(similar to the Java notify method).

Parallel statements (incl. parallel, i.e. unrolled ‘loops)

Shared variables (and their access mechanisms) are not defined.

The programmer does not specify the scope of the locks (atomic blocks)

but they are managed by the compiler/runtime environment.

= Code analysis algorithms are required in order to provide efficiently,
otherwise the runtime environment needs to associate every atomic block with a global lock.

Communication & Synchronization

Message-based synchronization

Message protocols

Synchronous message b
(receiver waiting)

Delay the receiver process until

* Sender becomes available

+ Sender concludes transmission

time | Smeronous

Communication & Synchronization

Message-based synchronization

Message protocols

Remote invocation .

Delay sender o receiver &
until the first rendezvous point ,

Pass parameters o

Keep sender blocked while

receiver executes the local procedure

Pass results

Release both processes out of the rendezvous

syncronous

1
a

Communication & Synchronization

Communication & Synchronization

Shared memory based synchronization

Modula-1, Chill, Parallel Pascal, ...

« Fullimplementation of the
Dijkstra / Hoare monitor concept

The term monitor appears in many other
concurrent languages, yet it s usually not
associated with an actual language primitive.

.|
=3 Communication & Synchronization

Current developments
Synchronization in Chapel
Chapel offers a variety of concurrent primitives:

Parallel operations on data (e.g. concurrent array operations)
Parallel statements (incl. parallel, i.e. unrolled ‘loops’)
Parallelism can also be explicitly limited by serializing statements

Atomic blocks for the purpose to construct atomic transactions

Memory integrity needs to be | by means of syn;
(waiting for one or multiple control flows to complete)
andjor atomic blocks

Further Chapel semantics are still forthcoming so there is still hope for a
stronger shared memory synchronization / memory integrity construct.

il
=3 Communication & Synchronization

Message-based synchronization

Message protocols

Asynchronous message

Neither the sender nor the receiver is blocked:

« Message is not transferred directly
« Abuifer is required to store the messages

« Policy required for buffer sizes and
buffer overflow situations

ssyncrono
time |_Simeronous

||

Communication & Synchronization

Message-based synchronization
Message protocols
Remote invocation
(simulated by asynchronous messages)

« Simulate two synchronous messages

« Processes are never actually synchronized

ime | omeronaus

Shared memory based synchronization

Ada

High-level synchronization support
which scales to large size projects

Full compiler support = [—
incl. potential deadlock analysis

Low-Level semaphores for very special case]

Ada has still
ho mainstream competitor
in the field of explicit concurrency.
(2018)

|
|

Communication & Synchronization

Synchronization

Message-based synchronization

Synchronization model Message structure

« Asynchronous « arbitrary

« Synchronous « restricted to ‘basic’ types

+ Remote invocation « restricted to un-typed communications

Addressing (name space)

* direct communication
+ mail-box communication

Communication & Synchronization

Message-based synchronization

Message protocols

Asynchronous message
(simulated by synchronous messages)

Introducing an intermediate process:

« Intermediate needs to be ac-
cepting messages at all times.

« Intermediate also needs to send
out messages on request.

& While processes are blocked in the sense of
synchronous message passing, they are not ac-
tually delayed as the intermediate is always ready.

=3 Communication & Synchronization

Message-based synchronization

Message protocols

Remote invocation (no results) I l

Shorter form of remote invocation which does - oo
not wait for results to be passed back imocation

« still both processes are actually
synchronized at the time of the invocation.

S

Communication & Synchronization

High Performance Computing
Synchronization in large scale concurrency

High Performance Computing (HPC) emphasizes on

keeping as many CPU nodes busy as possible:

& Avoid contention on sparse resources.

w Data is assigned to individual processes rather than processes synchronizing on data.
& Data integrity is achieved by keeping the CPU nodes in approximate “lock-step”,

yet there is still a need to re-sync concurrent entities.

Traditionally this has been implemented using the
Message Passing Interface (MPI) while implementing separate address spaces.

& Current approaches employ partitioned address spaces,
i.e. memory spaces can overlap and be re-assigned. e Chapel, Fortress, X10.

& Not all algorithms break down into independent computation slices and so there is
aneed for memory integrity mechanisms in shared/partitioned address spaces.

Communication & Synchronization

Message-based synchronization

Message protocols

Synchronous message
(sender waiting)

Delay the sender process until

* Receiver becomes available

« Receiver acknowledges reception

Communication & Synchronization

Message-based synchronization

Message protocols

Synchronous message
(simulated by asynchronous messages)

Introducing two asynchronous messages

« Both processes voluntarily suspend them-
selves until the transaction is complete.
As no immediate communication takes place,
the processes are never actually synchronized.
The sender (but not the receiver) process
knows that the transaction is complete. ime oo |

Communication & Synchronization

Message-based synchronization
Message protocols
Remote invocation (no results)
(simulated by asynchronous messages)

« Simulate one synchronous message

« Processes are never actually synchronized

Communication & Synchronization

Message-based synchronization

Synchronous vs. asynchronous communications

Purpose ‘synchronization’: & synchronous messages / remote invocations
Purpose last message(s) only’: e asynchronous messages

& Synchronous message passing in distributed systems requires hardware support.

w Asynchronous message passing requires the usage of buffers and overflow policies.

Can both communication modes emulate each other?

Communication & Synchronization

Message-based synchronization

Message structure

« Machine dependent representations need to be taken care of in a distributed environment
« Communication system is often outside the typed language environment.
Most communication systems are handling streams (packets) of a basic element type only.

w Conversion routines for data-structures other then the basic element type are supplied
manually (POSIX, C)
. semi-automatic (CORBA)
. automatic (compiler-generated) and typed-persistent (Ada, CHILL, Occam2)

Communication & Synchronization

Message-based synchronization

Message-passing systems examples:

one-to-one
many-to-one

KRR many-to-many

synchronous

5
£
35 method
message queues
message passing
essage passin,

t contents
v bytesstream
v v memory-blocks
v basic types

Java: e no message passing system defined

AN

R R R asynchronous
LY

=
H
3
£
£
Z
v
v
v

RS symmetrical

AN

Communication & Synchronization

Message-based synchronization
Message-based synchronization in CHILL

CHILL is the ‘CCITT High Level Language’,
where CCITT is the Comité Consultatif Télé et Télé

The CHILL language development was started in 1973 and standardized in 1979.
& strong support for concurrency, synchronization, and communica-
tion (monitors, buffered message passing, synchronous channels)
del sensorBuffer buffer (32) int;
receive case

send (reading onous = (Ser in data) :

esac;

SensorChannel = (int) to consumertype;

send SensorChannel (reading) receive case

to consumer ———— synchronous _|—>(SensorChannel in data): ..
esac:

1
a

Communication & Synchronization

Message-based synchronization

Synchronous vs. asynchronous communications

Purpose ‘synchronization’: & synchronous messages / remote invocations
Purpose last message(s) only: & asynchronous messages

& Synchronous message passing in distributed systems requires hardware support.

& Asynchronous message passing requires the usage of buffers and overflow policies.

Can both communication modes emulate each other?

Synchronous are emulated by a of asynchronous messages
in some systems (not identical with hardware supported synchronous communication).
Asynchronous communications can be emulated in

synchronized message passing systems by introducing a ‘buffer-task’

(de-coupling sender and receiver as well as allowing for broadcasts).

.|
=3 Communication & Synchronization

Message-based synchronization

Message structure (Ada)

package Ada.Streams is
pragna Pure (Streams);
type " is abstract tagged limited private;
type St is mod implementation-defined;
type Stream_Element_Offset is range implementation-defined;
subtype Strean_Element_Count is
Stream_Element_Offset range @..Stream_Element Offset’Last;
R nt_Array is
array (Stream_Element_Offset range <) of Stream_Element;
procedure Read (.) is abstract;
procedure Write () is abstract;
private
not specified by the language
end Ada.Streans;

il
=3 Communication & Synchronization

Message-based synchronization
Message-based synchronization in Occam2
Communication is ensured by means of a‘channel’, which:

« can be used by one writer and one reader process only
« and is synchronous:

CHAN OF INT SensorChannel:

INT reading
SEQ i = @ FOR 1000
e concurrent entities are
e synchronized at these points
11 read

INT data
SEQ i = 0 FOR 1000
SEQ
1
- employ data

=3 Communication & Synchronization

Message-based synchronization

Message-based synchronization in Ada

Ada supports remote invocations ((extended) rendezvous) in form of

« entry points in tasks
« full set of parameter profiles supported

If the local and the remote task are on different architectures,
or if an intermediate communication system is employed then:
& parameters incl. bounds and discriminants are ‘tunnelled’ through byte-stream-formats.

Synchronization:

« Both tasks are synchronized at the beginning of the remote invocation (s ‘rendezvous')

« The calling task if blocked until the remote routine is completed (s ‘extended rendezvous’)

Communication & Synchronization

Message-based synchronization

Addressing (name space)

Direct versus indirect:
send <message> to <process-name>
wait for <nessage> from <process-name>
send <message> to <mailbox>
wait for <nessage> from <nailbox>

Asymmetrical addressing:

send <message> to
wait for <message>

e Client-server paradigm

|
|

Communication & Synchronization

Message-based synchronization

Message structure (Ada)

Reading and writing values of any subtype S of a specific type T to a Strean:
procedure §'Virit (Stream : access Ada.Streams.Root_Stream_Type’Class;
Item : in T);
procedure §'Clas (Stream : access Ada.Streams.Root_Strean_Type’Class;
Iten : in T'Class);
procedure S'R (Stream : access Ada.Streams.Root_Strean_Type’Class;
Iten : out T);
procedure § (stream : access Ada.Streams.Root_Stream_Type’Class;
Iten : out T'Class)
Reading and writing values, bounds and discriminants
of any subtype S of a specific type T to a Strean:
procedure §'01 (Stream : access Ada.Streams.Root_Strean_Type’Class;
Iten : in T);
function §'Tnput (Stream : access Ada.Streams.Root_Stream_Type’Class) return T;

Communication & Synchronization

Message-based synchronization
Message-based synchronization in Occam2
Communication is ensured by means of a‘channel’, which:

« can be used by one writer and one reader process only

« and s synchronous:]

ssenti words
CHAN OF INT SensorChannel: Essential Occamz key

INT reading ALT PAR SEQ PRI
SEQ i = 0 FOR 1000 rOETIC

SEQ DATA TYPE RECORD OFFSETOF PACKED

-~ generate reading BOOL BYTE INT REAL
iptead CASE IF ELSE FOR FROM WHILE

L CE) FUNCTION RESULT PROC IS
ERI DO UL PROCESSOR PROTOCOL TIMER

SEQ SKIP STOP VALOF

— enploy data « Concurrent, distributed, real-time programming language!

=3 Communication & Synchronization

Message-based synchronization

Message-based synchronization in Ada

(Rendezvous)

<entry_name> [(index)] <parameters>
- waiting for synchronization
waiting for synchronization
waiting for synchronization
waiting for synchronization
—_ ~ accept <entry_name> [(index)]
<paraneter_profile>;

Communication & Synchronization

Message-based synchronization

Addressing (name space)

Communication medium:

Connections Functionality
one-to-one buffer, queue, synchronization
one-to-many multicast
one-to-all broadcast
many-to-one local server, synchronization
all-to-one general server, synchronization

many-to-many general network- or bus-system

Communication & Synchronization

Message-based synchronization

Message-passing systems examples:

[LeRe————
wr ordered indirect
byte-level many-to-many message passing
w ordered [direct | indirect] i i y-block
level | | ¥l message passing

CHILL: “buffers’, "signal
wr ordered indirect

 no message passing system defined

Communication & Synchronization

Message-based synchronization
Message-based synchronization in CHILL

CHILL s the ‘CCITT High Level Language’,
where CCITT is the Comité Consultatif élé, et

The CHILL language development was started in 1973 and standardized in 1979.
& strong support for concurrency, synchronization, and communica-
tion (monitors, buffered message passing, synchronous channels)
dcl SensorBuffer bu (32) int;

receive case
(SensorBuffer in data) :
esac;

send SensorBuffer (reading);

SensorChannel = (int) to consumertype;

send SensorChannel (reading) receive case
to consumer (sensorChannel in data)
esac;

Communication & Synchronization

Message-based synchronization

Message-based synchronization in Ada

(Extended rendezvous)

<entry_name> [(index)] <parameters>
- waiting for synchronization
waiting for synchronization
waiting for synchronization
waiting for synchronization
——————{ synchronized }————— —> accept <entry_name> [(index)]
blocked <parameter_profile> do

blocked - remote invocation

blocked - remote invocation

-~ remote invocation

return results_|———— — end <entry_nane>;

time

Communication & Synchronization

Message-based synchronization

Message-based synchronization in Ada
(Rendezvous)
[(index)]

<parameter_profil
chronization

bt <entry_nam

waiting for syn
waiting for synchronization

waiti for synchr zation
entry_nane> [(index)] <parameters> ——— —synchronized

Communication & Synchronization

Message-based synchronization

Message-based synchronization in Ada

(Extended rendezvous)

ept <entry. [(index)]

b

Some things to consider
In contrast to protected-object-entries, task-entry bodies can call other blocking operations.

Communication & Synchronization

Message-based synchronization

Message-based synchronization in Ada

or task-entries:

Accept statements can be nested (but need to be different)
helpful e.g. to synchronize more than two tasks.
ements can have on handler (like any other c

asks which owns

(arrays of entries) are supported.
s) are supported.

== Communication & Synchron

Summary
Communication & Synchronization

 Shared memory based synchronization

Flags, condition variables, semaphores,
nitors, protected objec

onditional critical r
Guard evaluation times, nested monitor calls, deadlocks,

simultaneous reading, queue managemen
Synchronization and object orientation, blocking operations and re-queuing
Message based synchronization

ation models

Synchroni
Addressing modes

